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J .  Phys. A :  Math. Gen. 13 (1980) 1607-1621. Printed in Great Britain 

Overtaking solitons of high energy in a one-dimensional 
Lennard-Jones chain 

T P Valkering and C de Langet 
Department of Applied Physics, Twente University of Technology, PO Box 217, 7500 A E  
Enschede, The Netherlands 

Received 18 June 1979 

Abstract. The collision between two solitary waves in a one-dimensional Lennard-Jones 
chain of identical masses with nearest-neighbour interaction has been studied numerically. 
We consider two solitary waves of high energy travelling in the same direction such that they 
approach each other and collide. After collision there emerge again two solitary waves. A 
(small) disturbance, however, stays behind and the energy and momenta of the outcoming 
solitary waves are not equal to the corresponding quantities of the incoming ones. The 
effects are relatively small, however. Calculations are performed for different ratios of the 
velocity of the faster solitary wave to the velocity of the slower one. The effects mentioned 
above ultimately diminish if this ratio tends to unity. Further, we calculate the influence of 
shifting the initial position of one of the solitons for fixed initial position of the other one. 
The results are interpreted in terms of the individual motion of the particles. 

1. Introduction 

The occurrence of solitary waves, i.e. localised excitations that propagate without 
changing their shape, in a one-dimensional chain of identical masses with an anhar- 
monic interaction potential is well known. Long low-wave models for such a chain, such 
as the Korteweg-de Vries (KdV) and the Boussinesq equations, have solitary wave 
solutions. The same holds for the exponential chain (Toda 1975). Solitary waves of 
high energy have been observed numerically in models with the Lennard-Jones and 
Morse potentials (Hardy and Karo 1977, Batteh and Powell 1978, Rolfe et a1 1979). 
Further, it has been shown analytically (Valkering 1978) that periodic permanent waves 
occur in any chain with nearest-neighbour interactions of the Lennard-Jones type. If 
the energy per particle is high, the energy within one wavelength is strongly localised 
and the solution can be interpreted as a ‘solitary’ wave running through a closed circular 
chain. 

In some of the cases mentioned above the solitary waves show the typical soliton 
behaviour, i.e. the equations admit solutions in which two different solitary waves 
approach each other, collide and emerge after collision with the same shapes and 
velocities as they had before. This type of behaviour has been found both analytically 
(in the KdV and Toda models) and numerically. In spite of these results, however, one 
may not expect that the exact soliton behaviour, as exhibited by the KdV and Toda 
models, holds true exactly for an arbitrary interaction potential. 

t Present address: Institute of Theoretical Physics, University of Nijmegen, Toernooiveld, Nijmegen, The 
Netherlands. 
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In order to get some insight into this problem, we performed a set of calculations on 
two colliding solitary waves of high energy. We assumed nearest-neighbour inter- 
actions and a Lennard-Jones 6-12 potential. In particular, we considered the following 
three questions. 

(i) If, after a collision, there exist again two solitary waves, what are their energies 
and momenta and is there transfer of momentum and energy to the underlying lattice? 

(ii) Do the effects mentioned under (i) depend on the velocities of the incoming 
solitons, in particular on their ratio? 

(iii) Do these effects depend on the distance between the solitary waves at the initial 
timet? 

We calculated five series of collisions between two solitary waves with velocities C, 
(the faster one) and C, (the slower one) respectively. Each series is characterised by the 
quotient C,/Cs which varies from 3.54 to 1.15, C, having a fixed value. Within each 
series we varied the initial position of the faster wave, the initial position of the slower 
one being fixed. The results of the calculations are given in § 3. 

For a good understanding of these results, we consider in 0 2 the propagation of a 
single solitary wave of high energy. The energy in this case is concentrated mainly in 
one particle. The wave then propagates through the chain by repeated two-particle 
collisions in which the energy of the excited particle is transferred to the next particle, 
etc. The analysis in this section is based on Valkering (1978). 

Finally, the results of 5 3 will be interpreted starting from the picture of single 
solitary wave propagation described above. This will be done in § 4. 

2. Solitary waves of high energy 

In 0 2.1 we shall give some analytic results, which are taken from Valkering (1978). 
Subsection 2.2 is devoted to the interpretation of these results in  terms of the motion of 
a chain of hard spheres. 

2.1. Analytical results 

Consider a chain of unit masses with unit equilibrium distance between the particles. 
Let r,, denote the coordinate of the nth particle with respect to its equilibrium position 
and assume an interaction potential V(r, - r , -* ) .  The equation of motion for the nth 
particle then reads 

r,, = -V'(r , , -rf l - i )+ V'(r,+l-r,,). (2.1) 

V ( x )  = A[( 1 + p - 2( 1 4- X ) p  + 11. (2.2) 

r , ( t )  = r(wt - nk)+ n A  (2.3) 

'The present calculations are performed with the Lennard-Jones potential (figure 1) 

Consider a solution of (2.1) of the form 

where r is a function of period 277 with zero average and where o, k and A are real 
numbers. The form (2.3) represents a wave in the infinite chain with circular frequency 
and wavenumber w and k respectively and average distance 1 + A  between the particles. 

t This effect cannot he cxcluded a priori because of :he discreteness of the lattice. 
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X 

Figure 1. Lennard-Jones 6-12 potential. Vr, = A. 

The parameter A gives the expansion of the chain per particle. Substitution of (2.3) in 
the equations of motion (2.1) yields, if wt - nk is replaced by 8, 

w2(d/de)2r(e) = - V’(r(0)  - r(e + k )  + A) + V’( r (6  - k )  - r ( 0 )  + A). (2.4) 

This equation is also found in the case of a closed circular chain of N particles at 
equilibrium distance 1 + A ,  with deviation from the equilibrium position given by 
r, ,( t)  = r(wt - n k ) ,  k = 27-r/N, and with interaction potential 

~ ( r , , - - r , , - J =  V(r, - r n - l i - A ) -  Vf(A)(rn-rn-l). (2 .5)  

The second term in the potential is added to guarantee that the potential has a minimum 
in the equilibrium position. The term cancels, however, in the equations of motion. We 
actually performed our calculations on such a closed chain. 

From Valkering (1978, § 4) one easily obtains that (2.4) has a family of solutions 

b 2 ( ~ ) ,  rw,  e)}, (2 .6)  

depending on a parameter, called R, satisfying 

1 - I (dr/dSI2 d e  = R2. 
27-r ..r 

The range of R appears to be bounded: 
-I 

O S R < R ,  R o = ( l + h ) N / ( 2 d N -  1). 

(2.7) 

Note that this does not imply a physical restriction because the energy of the wave tends 
from zero to infinity in this range. The derivative dr/de is in L2[-7-r, + T I  and one shows 
easily that r and dr/d0 are continuously differentiable. 
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Now we shall formulate some, results for the case that R is close to Ro. These results 
are immediate consequences of Valkering (1978, theorems 6.1 and 6.2). The function 
so(e) E L2[-7r, +7r ]  occurring in the following lines is defined by 

1 
2T 

so(O)=-(l+h)N 

elsewhere. 
1 N 

=--(I +A)- 
27r N - 1  (2.9) 

Further, we assume that A, the average expansion of the chain per particle, does not 
exceed a certain value, say Ao7 determined by V"(Ao) = 0 (cf Valkering 1978, theorem 
4.4). For the present potential (2.2), it holds that A. = (7) 

From the theorems mentioned above one derives easily the following proposition. 

13 1/6- 1 = 0.1087. 

For any E < 0 there is a solution { w 2 ( R ' ) ,  r(R', e ) }  such that 
(9 

(2.10) 

where 11 I /  denotes the L2[-7r,  norm, 
(ii) 

H+;k 

sup H lr(O+$k)--r(O--~k)-[ H-tk  s o ( T ) d T / s E ( l + A ) ,  (2.11) 

(iii) and there exist positive numbers independent of E such that 

w 2  > M1 + M ~ E - ~  m = 12. (2.12) 

The inequality (2.12) expresses that w 2  is unbounded in the limiting case considered 
here. Consequently the same holds for the energy of the wave (cf Valkering 1978,§ 5). 
Further, note that m in (2.12) equals 12 because of the Lennard-Jones 6-12 potential 
and that (2.10) implies, together with (2.8), 

(2.13) 0 < Ro - R ' s ERO. 

2.2. The hard-sphere interpretation 

To give an interpretation of the results of § 2.1 we should realise that the velocity of the 
nth particle is approximately (in the sense of (2.10)) given by (cf (2.3)) 

i n ( t )  = wso(wt- nk) k = 2rr/N. (2.14) 

In an analogous way we have approximately (in the sense of (2.11)) 

rn(t)-rn-l(t) = A +  wo(wt-nk+$) (2.15) 

in which WO(@) is given by 

(2.16) 

The functions so(@) and wo(0)  are shown in figure 2. 
The right-hand sides of (2.14) and (2.15) describe a particular motion of a system of 

hard spheres with radius zero. This is represented schematically in figures 3 and 4. 
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Figure 2. The functions $"(e) ( a )  and w,,(O) ( b )  for N = 6 .  
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- 

Figure 3. Coordinate-time diagram representing the 
propagation of a high-energy solitary wave in the 
chain. The coordinate pn of the nth particle is given 
by p n  A n ( 1  + A ) +  r(wt - 2 m / N ) .  

Figure 4. Schematic representation of the propaga- 
tion of a high-energy solitary wave. The arrows 
denote the velocities of the corresponding particles. 

Figure 3 shows the coordinate-time diagram corresponding to the right-hand sides of 
(2.14) and (2.15). Figure 4 shows schematically the motion of a part of the chain. 

Note that the propagation of the solitary wave through the chain is described 
essentially by repeated two-particle collisions in this high-energetic case. The ( n  + 1)th 
particle (cf figure 4) moves with a velocity w( l+A)N/2r  to the right (cf (2.14)). The 
other particles move with velocities w ( l  + A)N/27r(N - 1) to the left. The distance di,i+l 
between two neighbouring particles is given by (cf (2.15) and figure 2) 

i f n, n + 1. (2.17) 

The fact that for (R, - R)/Ro<< 1 the wave in the original chain can be approximated 
by a wave in a chain of hard spheres can be understood in the following way. If (2.3) is a 
solution of the original equations of motion, then 

Fn(t) = r ( t -  nk )+  nA (2.18) 

is a solution of a chain with interaction potential 

V ( F ~  - = V(rn - r n - l ) .  (2.19) 

If R tends to Ro then u 2  tends to infinity (cf (2.12)), so that V tends to a potential of 
hard spheres. 
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To conclude this section we consider the velocity of the wave. Obviously the phase 
velocity of the wave described in (2.3) is given by 

C = w / k  = Nw/2w, (2.20) 

the dimension of which is ‘number of particles per unit time’. One can also say that C 
gives the velocity in material coordinates. Correspondingly, the velocity in local 
coordinates, i.e. with respect to the external fixed frame of reference, equals C( 1 +A).  

3. Collision of two solitary waves 

3.1. Qualitative description 

We start the calculation with two solitary waves that are separated completely in the 
practical sense and that propagate in the same direction such that the faster one 
overtakes the slower one. As time proceeds they collide and after collision there again 
appear two solitary waves. The calculations are stopped for times such that the 
outcoming solitary waves are separated again. A small disturbance is left behind, 
however, and the outcoming solitary waves are not the same as the incoming ones (cf 
figure 5 ) .  This behaviour differs from the behaviour exhibited by the KdV and Toda 
models, in which after collision the same solitons appear and in which there is no 
disturbance left behind. The differences, however, are relatively small as we shall see, 
which justifies the use of the term ‘solitons’ in the Lennard-Jones case as well. 

- before  coll ision 

d after collision 

Figure 5. Schematic representation of a collision of two solitons. 

It is not at all obvious that it is possible to speak of separated solitons in a finite chain. 
This possibility, however, is due to the fact that we are dealing with solitons of very high 
energy. Consider a single soliton. Its energy is almost completely concentrated within a 
small number, say four, of neighbouring particles. This is, in fact, a consequence of 
(2.10) and (2.1 1). Outside the excitation region the distance between two neighbouring 
particles equals a constant, say (5, which is given approximately by (2.17), whereas the 
velocities of the particles are equal. Because an additional constant velocity can be 
given to the whole chain without influence on the wave motion, the velocities of the 
particles outside the excitation can be chosen to be zero. From this point of view a 
soliton is an excitation propagating in a chain at rest with distance (5 between the 
particles. Then, however, it is also possible to consider two separated solitons pro- 
pagating in the chain. Further, note that the velocity of a single soliton with respect to 
the fixed frame of reference equals Cd; where C is given by (2.20). 

We performed five series of calculations, each series being characterised by the 
quotient CF/Cs as described in the introduction. Within each series the initial position 
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of the faster solitary wave varies over a distance, say d .  The numerical results, however, 
are necessarily periodic in d ,  as the following argument shows. This period, say do,  is 
given by 

-c€- c, 
CS 

d o = d p .  (3.1) 

The essentials of the argument are that the fictitious position of the collision shifts with 
respect to the lattice if the initial distance varies, and further that two collisions are 
equivalent if the positions at which they take place are equivalent with respect to the 
lattice at rest, i.e. if their difference equals an integer times the particle distance d i n  the 
region at rest. 

Let XF and X ,  denote the positions of the solitons at time t = 0 with respect to the 
lattice. The solitons then collide at time to (say), 

Consequently the collision takes place at position X c =  X,+  toCsd. It follows that 

If the position at time t = 0 of the faster soliton is given by X f . ,  we calculate X &  in the 
same way and we get for the difference X c - X &  (cf figure 6 )  

xg -x ,  
X c - x ; ,  = c,--. 

CF - CS 
(3.4) 

To be equivalent, Xc- XL must be equal to an integer times 2, from which requirement 
(3.1) follows. 

Figure 6. Fictitious position of the collision of solitons for different initial positions of the 
faster one. 

3.2. Quantitative description 

In order to describe the effects of the collisions quantitatively we define the momentum 
of a soliton as 

"2 

ni  

M = Z i n  (3.5) 

where nl and n2 are chosen in such a way that the excitation lies completely between the 
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nlth and nzth particles, i.e. these two particles are at rest within the calculational 
accuracy. In particular, we are interested in the quantities 

AMS,F = MS,Fa - MS,Fb A MT = AMs + AM,, (3.6) 

where the subscripts a and b respectively denote 'after' and 'before' collision. For the 
high-energy solitons considered here, a value n2- n l  = 3 appeared to be appropriate. 
Because of the centre-of-mass motion of the chain, M in (3.5) does not have a unique 
value. The differences in (3.6), however, are well defined. 

In an analogous way we define the energy of the soliton as 
"2 

n i  

E=C'i2+'  z n 2 (  v(rn+i - - rn) + v ( r n  - rn-d - 2 v(0)) (3.7) 

where the potential v (cf (2.5)) has been used to eliminate the energy corresponding to 
the average expansion 1 + A  of the chain. The quantities AET, etc, are then defined 
analogously to (3.6). 

In the present case we have, the particles outside the excitation being at rest, 

M F b =  1-OX lo2  E F b = j * O X  10 c F =  12 x lo2.  (3.8) 5 

Figure 7 shows AMF and -AMT as a function of d/do for different values of cF/cs. Note 
that the vertical scales are the same in each case. One finds -AMs by adding the 
corresponding graphs. More detailed numerical information about these calculations is 
given in table 1. 

The graphs of A E F  and A E s  as a function of d/do show qualitatively the same 
behaviour as those of AMF and AMs respectively. This is obvious because for any 
soliton E is a unique function of M so that for the small variations of M we are dealing 
with there exist some constants  CY^,^ such that 

AEF,s QF,SAMF.S. (3.9) 

The relation between A E T  and AMT is not so simple of course. Figure 8 shows A E T  
as a function of d / d o  in the different cases. Table 2 gives some numerical values 
characterising the curves for AE. 

To conclude this section we note on the one hand that the maximal values of the 
energy transfer to the lattice are large compared with Vo (cf figure l), such that the 
excitation which remains after the collision is a strongly nonlinear phenomenon. It is 
not a soliton, however (see the following section). On the other hand the energy 
transfer to the lattice is very small with respect to the energies of the interacting solitons. 
The same holds for the transfer of momentum. In fact this justifies the use of the term 
'solitons' for the solitary waves considered here. 

In the following section we consider the results in more detail. 

4. Interpretation 

If we consider figure 7, we observe that the shapes of the curves change for diminishing 
values of cF/cs .  This can be explained after closer inspection of the collision process. 
This inspection also gives more insight into the fact that all values in tables 1 and 2 
finally diminish for decreasing c F / c S .  We start from the hard-sphere model described 
in § 2 .  
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Figure 7. AMF (left) and -AMT (right) against d /do  for different values of CF/Cs; (a ) - ( e )  
correspond to CF/Cs=3.45, 2.54, 1.73, 1.27 and 1.15 respectively. For some precise 
values see table 1 .  Note that the dots correspond to the calculated values. The line 
connecting them is drawn to guide the eye. 

The collision of two 'solitons' in a hard-sphere chain is represented schematically in 
figure 9. The two 'solitons' collide at a' .  If a' does not coincide with one of the a,, then 
the collision of the solitons is a simple two-particle collision in which the faster 'soliton' 
transfers its momentum and energy completely to the slower one and vice versa. If a' 
coincides with one of the ai then the collision of the 'solitons' is a three-particle 
collision. Exchange of momentum and energy is governed by the corresponding 
conservation laws. The result is not unique. Certain bounds, i.e. values for AMF,s+, 
however, can be given (table 3). The behaviour of AMF as a function of d / d o  is given 
schematically in figure 10. Obviously, however, this figure is not realistic and for a 
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1 \ 

i I 

Figure 8. AET against d / d o  for different values of CF/Cs.  The meaning of ( a ) - ( e )  is given 
in the caption to figure 7 .  

Figure 9. Coordinate-time diagram representing the collision of two ‘solitons’ in a 
hard-sphere chain (cf also figure 3) .  

near-hard-sphere chain, i.e. when the interaction forces have effectively a very small 
but non-zero range, one expects a figure like figure 11. Although one can no longer 
speak exactly of two- and three-particle collisions respectively, one can say that the flat 
part corresponds to a two-particle collision and the oscillatory part to a three-particle 
collision. One expects that this near-hard-sphere model applies in the case of solitons 
of high energy (cf 0 2). 

NQW compare our numerical results, in particular figure 7, with figure 11, Indeed, 
we see that the case corresponding to the largest value of C,/ C, is similar to figure 1 1. 
The resemblance disappears, however, for diminishing values of CF/Cs. This is easily 
explained in the following way. For large C,/C,, the interaction time for two colliding 
particles (say for a collision at a’, figure 9) is so short that the particles finish their 



1618 T P Valkering and C de  Lunge 

Table 3. Values of the bounds AMF+ etc for a hard-sphere chain. These values are 
calculated for M,b= 1000 and M s ~ =  MFbCSICF. 

cF/ cS AMF+ AMF- AMs+ AMs_ AMT+ A MT- 

3.46 24 -273 379 -135 111 -106 
2.54 46 -245 33 1 -183 137 -86 
1.73 100 -184 220 -316 216 -36 
1.27 204 -100 106 -469 265 -6 
1.15 25 1 -63 64 -529 278 -1 

Figure 10. AMF against d/d,  for collisions of ‘solitons’ in a hard-sphere chain. The broken 
vertical line denotes the region of non-uniqueness. 

Figure 11. AMF against d / d o  for collisions of ‘solitons’ in a near-hard-sphere chain. 

interaction before they meet the next particle at rest. If CF/Cs diminishes, however, the 
time needed for a completed interaction grows, and finally the possibility of a two- 
particle interaction disappears and there are always three or more particles involved in 
the interaction between the solitons. The shapes of the curves AMF,s then become more 
symmetric, i.e. the tops shift to d / d o  = 0.25 and 0.75 (table 1, second column). 

This change of character of the collision process for diminishing CF/Cs is found back 
in the velocity-time matrices given in tables 4 and 5. 

First consider the case with the largest value of CF/Cs (table 4). We see that the 
collision of the solitons is essentially a three-particle interaction. After the interaction 
one particle has a relatively low velocity and accounts for the disturbance of the lattice. 
If we look at table 5 ,  however, we see that the collision between the solitons takes up a 
few particle distances and, correspondingly, that more particles are involved in the 
disturbance. 

We conclude that the interpretation in terms of the individual motion of (near-)hard 
spheres gives a reasonable qualitative explanation of the results, at least for the larger 
values of CF/Cs. A few remarks, however, must be made. 
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Table 4. Relative values of the velocities i,,(t) (upper part) and ra+ l ( t )  - r , ( t )  (lower part) as 
a function of time for a collision characterised by CF/Cs= 3.46 and d/do=0.38. Time 
increases with a step equal to The actual values are the given ones multiplied by lo-' 
and respectively. 

n 1 2 3 4 5 6 7 8 9  10 11 12 
t 

1 9985 0 0 0 0 2498 0 0 0 0 0 0  
2 0 9985 0 0 0 2357 142 0 0 0 0 0  
3 0 0 9975 10 0 21 2478 0 0 0 0 0  
4 0 0 0 8791 1194 0 2498 0 0 0 0 0  
5 0 0 0 0 183 9802 2436 63 0 0 0 0  
6 0 0 0 0 0 117 2798 9569 0 0 0 0  
7 0 0 0 0 0 47 2436 0 10000 0 0 0  
8 0 0 0 0 0 47 2421 15 0 10000 0 0 
9 0 0 0 0 0 47 232 2204 0 0 9980 20 

10 0 0 0 0 0 4 7  1 2436 0 0 0 7139 
11 0 0 0 0 0 47 0 2432 5 0 0 0  
12 0 0 0 0 0 47 0 773 1664 0 0 0  

n 1 2 3 4 5 6 7 8 9 10 11 12 
t 

1 -255 81 81 81 -258 -360 81 81 81 81 81 81 
2 -275 -409 81 81 -10 -606 79 81 81 81 81 81 
3 81 -121 -562 81 81 -537 -80 81 81 81 81 81 
4 81 81 29 -709 78 -288 -330 81 81 81 81 81 
5 81 81 81 81 -659 -143 -578 80 81 81 81 81 
6 81 81 81 81 81 -582 -675 -125 81 81 81 81 
7 81 81 81 81 87 -343 -280 -406 -278 81 81 81 
8 81 81 81 81 92 -104 -524 81 -251 -433 81 81 
9 81 81 81 81 96 61 -620 7 81 -96 -588 81 

10 81 81 81 81 101 60 -383 -233 81 81 50 -725 
11 81 81 81 81 106 56 -139 -477 81 81 81 81 
12 81 81 81 81 110 51 69 -649 46 81 81 81 
13 81 81 81 81 115 46 81 -430 -186 81 81 81 
14 81 81 81 81 120 42 81 -186 -430 81 81 81 
15 81 81 81 81 125 37 81 45 -649 69 81 81 
16 81 81 81 81 129 32 81 81 -477 -139 81 81 

First note the oscillatory character of the disturbance of the chain after collision (cf 
table 6). This accounts at least partially for the diminishing of AMF,s for smaller CF/Cs. 
Another consequence of this oscillatory behaviour is that the disturbance is not a soliton 
itself (cf also table 4). 

The values in table 3 are in general much larger than those in table 1, in particular for 
the larger values of CF/Cs. This effect seems to be due to the use of the Lennard-Jones 
6-12 potential and not to a collective phenomenon such as described in the foregoing 
paragraph. 

Finally, one may ask whether the effects considered here are due only to the very 
high energy of the solitons. Therefore we calculated one series of collisions of solitons 
of much lower momentum and energy: M ~ = 2 * 9 1 ,  Ms= 1.54, EF=4*14 ,  E s =  1.11, 
CF/Cs = 1.5. Note that the energy is in the strongly nonlinear region (cf figure 1) and 
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Table 5. Relative values of the velocities i , , (r) as a function of time €or a collision 
characterised by CF/Cs= 1.5 and d/d,,= 0.77. Time increases with a step equal to 
6 X ‘The actual values are the given ones multiplied by lo-’. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

~ ~~ ~~ 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 0 0 0 0 0 0 0 
70 832 0 0 0 0 0 0 0 0 0 0 
82160 10 0 0 0 0 0 0 0 0 0 

121 82049 0 0 0 0 0 0 0 0 0 
35 51761 409 0 0 0 0 0 0 0 0 

99 998 4 82166 0 0 0 0 0 0 0 0 
1549 98453 43 186 38984 0 0 0 0 0 0 0 

0 99354 648 82 167 3 0 0 0 0 0 0 
0 0 99999 476 81 696 0 0 0 0 0 0 
0 0 ’70 99929 82066 106 0 0 0 0 0 
0 0 0 77514 22487 82170 0 0 0 0 0 
0 0 0 4 99704 72705 9759 0 0 0 0 
0 0 0 4 59 96257 85851 1 0 0 0 
0 0 0 4 52 35863 49325 96928 0 0 0 
0 0 0 4 52 -83 82513 97117 2569 0 0 
0 0 0 4 52 -83 281 82123 99792 4 0 
0 0 0 4 52 -83 -12 82229 196 99786 0 
0 0 0 4 52 -83 -12 6 82392 40306 59507 
0 0 0 4 52 -83 -12 -1 63844 18555 99772 
0 0 0 4 52 -83 -12 -1  0 82397 5 
0 0 0 4 52 -83 -12 -1 0 1036 81363 
0 0 0 4 52 -83 -12 -1 0 0 82343 
0 0 0 4 52 -83 -12 -1 0 0 19 

Table 6. Relative values of the velocities io and energies 

of particles that take part of the disturbance at a fixed time after the collision of the solitons. 
The velocity ratio CF/Cs equals 1.15. The time is chosen in such a way that the disturbance 
is separated completely from the solitons (see also table 5 ) .  The actual values are the given 
ones multiplied by lo-.’ and 5 X respectively. 

-- 
Velocity Energy 

-- _-___ 
d/do  n n + l  n + 2  n + 3  n + 4  n + 5  n + 6  n n + l  n + 2  n + 3  n + 4  n + 5  n + 6  

0.97 0 6 78 -79 -6 0 0 7 7  67 70 7 7 7 
0.77 0 4 52 -83 -12 -1 0 7 7  34 76 8 7 7 
0.51 0 2 27 .-7 -25 -2 0 7 7  14 7 13 7 7 

that these values are of the same order as the difference quantities AMF, etc, in the 
former case. After collision there again appear two solitons, and 
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Further, we again found the oscillatory behaviour of the curves AMF, etc, so there 
are no essential differences with the high-energy case. 
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